Fungal Strategies for the Remediation of Polycyclic Aromatic Hydrocarbons 105
John, W. C., I. O. Ogbonna, G. M. Gberikon and C. C. Iheukwumere. 2021. Evaluation of biosurfactant production
potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Braz. J.
Microbiol. 52: 663–674.
Jove, P., M. À. Olivella, S. Camarero, J. Caixach, C. Planas, L. Cano and F. X. De Las Heras. 2016. Fungal
biodegradation of anthracene-polluted cork: a comparative study. J. Environ. Sci. Health. Part A, 51(1): 70–77.
Kadri, T., T. Rouissi, S. K. Brar, M. Cledon, S. Sarma and M. Verma. 2017. Biodegradation of polycyclic aromatic
hydrocarbons (PAHs) by fungal enzymes: a review. J. Environ. Sci. 51: 52–74.
Kannangara, S., P. Ambadeniya, L. Undugoda and K. Abeywickrama. 2016. Polyaromatic hydrocarbon degradation
of moss endophytic fungi isolated from Macromitrium sp. in Sri Lanka. J. Agric. Sci. Technol. 6(03): 171–182.
Karigar, C. S. and S. S. Rao. 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme
Res.
Kariyawasam, T., G. S. Doran, J. A. Howitt and P. D. Prenzler. 2021. Polycyclic aromatic hydrocarbon contamination
in soils and sediments: sustainable approaches for extraction and remediation. Chemosphere. 132981.
Karlapudi, A. P., T. C. Venkateswarulu, J. Tammineedi, L. Kanumuri and B. K. Ravuru. 2018. Role of biosurfactants
in bioremediation of oil pollutiona review. Petroleum, 241–249.
Koukkou, A. I. and C. Drainas. 2008. Addressing PAH biodegradation in Greece: biochemical and molecular
approaches. IUBMB life. 60(5): 275–280.
Kour, D., T. Kaur, R. Devi, A. Yadav, M. Singh, D. Joshi and A. K. Saxena. 2021. Beneficial microbiomes for
bioremediation of diverse contaminated environments for environmental sustainability: present status and
future challenges. Environ. Sci. Pollut. Res. 28(20): 24917–24939.
Kuppusamy, S., P. Thavamani, K. Venkateswarlu, Y. B. Lee, R. Naidu and M. Megharaj. 2017. Remediation approaches
for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends
and future directions. Chemosphere. 168: 944–968.
Langenbach, T. 2013. Persistence and bioaccumulation of persistent organic pollutants (POPs). pp. 305–329. In: Patil,
Y. B. and P. Rao [ed.]. Applied bioremediation—active and passive approaches. DOI: 10.5772/56418.
Lee, H., Y. Jang, Y. S. Choi, M. J. Kim, J. Lee, H. Lee et al. 2014. Biotechnological procedures to select white rot
fungi for the degradation of PAHs. J. Microbiol. Methods. 97: 56–62.
Lee, H., S. Y. Yun, S. Jang, G. H. Kim and J. J. Kim. 2015. Bioremediation of polycyclic aromatic hydrocarbons in
creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediat. J. 19(1): 1–8.
Leonardi, V., V. Sasek, M. Petruccioli, A. D’Annibale, P. Erbanová and T. Cajthaml. 2007. Bioavailability modification
and fungal biodegradation of PAHs in aged industrial soils. Int. Biodeterior. Biodegradation. 60(3): 165–170.
Li, X. and P. Li. 2008. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in
soil and slurry phases. J. Hazard. Mater. 150(1): 21–26.
Li, X., Y. Wang, S. Wu, L. Qiu, L. Gu, J. Li et al. 2014. Peculiarities of metabolism of anthracene and pyrene by
laccase‐producing fungus Pycnoporus sanguineus H 1. Biotechnol. Appl. Biochem. 61(5): 549–554.
Li, X., Y. Pan, S. Hu, Y. Cheng, Y. Wang, K. Wu and S. Yang. 2018. Diversity of phenanthrene and benz [a] anthracene
metabolic pathways in white rot fungus Pycnoporus sanguineus 14. Int. Biodeterior. Biodegradation.
134: 25–30.
Lin, S., J. Wei, B. Yang, M. Zhang and R. Zhuo. 2022. Bioremediation of organic pollutants by white rot fungal
cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere. 134776.
Lisowska, K. and J. Długoński. 2003. Concurrent corticosteroid and phenanthrene transformation by filamentous
fungus Cunninghamella elegans. J. Steroid Biochem. Mol. Biol. 85(1): 63–69.
Maia, M., A. Capao and L. Procópio, 2019. Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1
strain with potential for microbial enhanced oil recovery. Bioremediat J. 23(4): 302–310.
Majcherczyk, A., C. Johannes and A. Hüttermann. 1998. Oxidation of polycyclic aromatic hydrocarbons (PAH) by
laccase of Trametes versicolor. Enzyme Microb. Technol. 22(5): 335–341.
Mandree, P., W. Masika, J. Naicker, G. Moonsamy, S. Ramchuran and R. Lalloo. 2021. Bioremediation of polycyclic
aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. Processes. 9(9): 1606.
Marco-Urrea, E., I. García-Romera and E. Aranda. 2015. Potential of non-ligninolytic fungi in bioremediation of
chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 32(6): 620–628.
Masih, J., R. Singhvi, K. Kumar, V. K. Jain and A. Taneja. 2012. Seasonal variation and sources of polycyclic
aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi-arid tract of northern India. Aerosol Air
Qual. Res. 12(4): 515–525.
McClements, D. J. and C. E. Gumus. 2016. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and
colloidal particles: molecular and physicochemical basis of functional performance. Adv. Colloid Interface
Sci. 234: 3–26.