Fungal Strategies for the Remediation of Polycyclic Aromatic Hydrocarbons 105

John, W. C., I. O. Ogbonna, G. M. Gberikon and C. C. Iheukwumere. 2021. Evaluation of biosurfactant production

potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Braz. J.

Microbiol. 52: 663–674.

Jove, P., M. À. Olivella, S. Camarero, J. Caixach, C. Planas, L. Cano and F. X. De Las Heras. 2016. Fungal

biodegradation of anthracene-polluted cork: a comparative study. J. Environ. Sci. Health. Part A, 51(1): 70–77.

Kadri, T., T. Rouissi, S. K. Brar, M. Cledon, S. Sarma and M. Verma. 2017. Biodegradation of polycyclic aromatic

hydrocarbons (PAHs) by fungal enzymes: a review. J. Environ. Sci. 51: 52–74.

Kannangara, S., P. Ambadeniya, L. Undugoda and K. Abeywickrama. 2016. Polyaromatic hydrocarbon degradation

of moss endophytic fungi isolated from Macromitrium sp. in Sri Lanka. J. Agric. Sci. Technol. 6(03): 171–182.

Karigar, C. S. and S. S. Rao. 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme

Res.

Kariyawasam, T., G. S. Doran, J. A. Howitt and P. D. Prenzler. 2021. Polycyclic aromatic hydrocarbon contamination

in soils and sediments: sustainable approaches for extraction and remediation. Chemosphere. 132981.

Karlapudi, A. P., T. C. Venkateswarulu, J. Tammineedi, L. Kanumuri and B. K. Ravuru. 2018. Role of biosurfactants

in bioremediation of oil pollutiona review. Petroleum, 241–249.

Koukkou, A. I. and C. Drainas. 2008. Addressing PAH biodegradation in Greece: biochemical and molecular

approaches. IUBMB life. 60(5): 275–280.

Kour, D., T. Kaur, R. Devi, A. Yadav, M. Singh, D. Joshi and A. K. Saxena. 2021. Beneficial microbiomes for

bioremediation of diverse contaminated environments for environmental sustainability: present status and

future challenges. Environ. Sci. Pollut. Res. 28(20): 24917–24939.

Kuppusamy, S., P. Thavamani, K. Venkateswarlu, Y. B. Lee, R. Naidu and M. Megharaj. 2017. Remediation approaches

for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends

and future directions. Chemosphere. 168: 944–968.

Langenbach, T. 2013. Persistence and bioaccumulation of persistent organic pollutants (POPs). pp. 305–329. In: Patil,

Y. B. and P. Rao [ed.]. Applied bioremediation—active and passive approaches. DOI: 10.5772/56418.

Lee, H., Y. Jang, Y. S. Choi, M. J. Kim, J. Lee, H. Lee et al. 2014. Biotechnological procedures to select white rot

fungi for the degradation of PAHs. J. Microbiol. Methods. 97: 56–62.

Lee, H., S. Y. Yun, S. Jang, G. H. Kim and J. J. Kim. 2015. Bioremediation of polycyclic aromatic hydrocarbons in

creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediat. J. 19(1): 1–8.

Leonardi, V., V. Sasek, M. Petruccioli, A. D’Annibale, P. Erbanová and T. Cajthaml. 2007. Bioavailability modification

and fungal biodegradation of PAHs in aged industrial soils. Int. Biodeterior. Biodegradation. 60(3): 165–170.

Li, X. and P. Li. 2008. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in

soil and slurry phases. J. Hazard. Mater. 150(1): 21–26.

Li, X., Y. Wang, S. Wu, L. Qiu, L. Gu, J. Li et al. 2014. Peculiarities of metabolism of anthracene and pyrene by

laccase‐producing fungus Pycnoporus sanguineus H 1. Biotechnol. Appl. Biochem. 61(5): 549–554.

Li, X., Y. Pan, S. Hu, Y. Cheng, Y. Wang, K. Wu and S. Yang. 2018. Diversity of phenanthrene and benz [a] anthracene

metabolic pathways in white rot fungus Pycnoporus sanguineus 14. Int. Biodeterior. Biodegradation.

134: 25–30.

Lin, S., J. Wei, B. Yang, M. Zhang and R. Zhuo. 2022. Bioremediation of organic pollutants by white rot fungal

cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere. 134776.

Lisowska, K. and J. Długoński. 2003. Concurrent corticosteroid and phenanthrene transformation by filamentous

fungus Cunninghamella elegans. J. Steroid Biochem. Mol. Biol. 85(1): 63–69.

Maia, M., A. Capao and L. Procópio, 2019. Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1

strain with potential for microbial enhanced oil recovery. Bioremediat J. 23(4): 302–310.

Majcherczyk, A., C. Johannes and A. Hüttermann. 1998. Oxidation of polycyclic aromatic hydrocarbons (PAH) by

laccase of Trametes versicolor. Enzyme Microb. Technol. 22(5): 335–341.

Mandree, P., W. Masika, J. Naicker, G. Moonsamy, S. Ramchuran and R. Lalloo. 2021. Bioremediation of polycyclic

aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. Processes. 9(9): 1606.

Marco-Urrea, E., I. García-Romera and E. Aranda. 2015. Potential of non-ligninolytic fungi in bioremediation of

chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 32(6): 620–628.

Masih, J., R. Singhvi, K. Kumar, V. K. Jain and A. Taneja. 2012. Seasonal variation and sources of polycyclic

aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi-arid tract of northern India. Aerosol Air

Qual. Res. 12(4): 515–525.

McClements, D. J. and C. E. Gumus. 2016. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and

colloidal particles: molecular and physicochemical basis of functional performance. Adv. Colloid Interface

Sci. 234: 3–26.